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20. Abstract iContinued)

Sevt•al cuztsenng methods were -pplied to data sets of practical importance. Autoanatic pattern
recognition using the k nea.res neighbors was applied. An efficient method for selecting a good
subset fror the full set of 44 features waa tried. In all cases, the mults were good.
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APPLICATION OF ALTOMATIC CLUSTERING
TO ELMIITrER IDENTIFICATION

I. I ý OD VCT I N

Research in and applications of artificial intelligence f41 are
the main thrusts of the Computer Science Laboratory, Communications
Sciences Divtsion, %aval Research Laboratory. At present, we are work-
ing on phoneme recognition for a low band width speech communication
system, a computer-controlled manipulator, and intelligent data base
management system, as well as automatic clustering and its application
to emitter identification. In this paper, we shall focus on the auto-
matic clustering work. The goal of clustering [1,2,3,5,61 is the par-
tioning of a given set of objects into subsets called clusters in such
a way that the objects in a cluster are similar to one another and that
objects in different clusters are dissimilar. Two objects may be con-
sidered similar if, for example, tht, euclidean distance between them in
the measurement ,feature) space is small.

Clustering has two main purposes. First, clustering may help in
getting a more or less direct understanding of the relationships among
the objects. Second, clustering may be useful as a first step in
pattern recognition. In pattern recognition (unlike clustering), each
presented object must be labeled with its class membership. After
clustering (with labels ignored), one can "look at" the data to estimate
whether pattern recognition will be easy or difficult, whether a giv-.n
class should be combined with another class or divided into two or more
classes, etc.

Since clustering is quite general, it has many applications. Later
we shell see thst clustering can be applied to emitter identification.
It can be applied to automatic phoneme recognition and personnel ciassi-
fication. It is often very important to find a cluster having only one
member. Such a cluster may be a mistake in the data base or represent
a very unusual object. An unusual use of a computer system may be an
attempted security penetration.

2. CLUSTERING THE EMITTER IDENTIFICATION DATA

Each row in Table 1 is a sample (object) representing 18 measure-
ments of an emission. Our sponsor gave us 18 samples. Without knowing
anything elsa about the data, we applied several clustering techniques,
some of which we had developed [2,5,61. We obtained the following four
clusters:

(1) 1, 2
(2) 3, 5, 6, 7, 9, 10, 11
(3) 4, 17, 18
(4) 8, 12, 13, 14, 15, 16

This means that samples (rows) 1 and 2 are in cluster (1), etc.
Note: Manuscript submitted October 29, 1976.
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Our sponsor then told us that the "real" clusters should be as follows:

(l') 5, 6, 10, 11

(2') 4, 17, 18

(3') 3, 7, 9

(4') 1, 2, 8, 12, 13, 14, 15, 16

Thus, the results were quite good. Careful analysis of the data
revealed the following:

(a) If cluster (1) has to be combined with any other cluster,
it should be combined with cluster (4). However, cluster
(1) is definitely different from cluster (4).

(b) From only the given data, one really cannot say that
cluster (1') and cluster (3') should be two clusters
rather than being combined into one cluster.

Our sponsor agreed with both of these statements.

We were then supplied with 12 new samples (rows) with some missing
values. (See Table 2). After using various clustering methods, we con-
cluded that A, B, C, D, E, and F belong to cluster (1'), that G, H, and
I belong to (2'), and that J, K, and L belong to either (1') or (3').
Then our sponsor told us that the first two conclusions are absolutely
correct. lie said that samples J, K, and L belong to cluster (3'). We
could say only that they belong to either (1') or (3'), because (V')
and (3') are so close to each other.

3. TWO CILSTERING METHODS

Two of the six clustering methods we used are data reorganization
[51 and two principal components (1,31. The other four are minimal
spanning trees tl,31, non-linear mapping [61, and two versions of a
triangulation method [21. We do not describe these here, since they
are fairly complicated to explain and are described elsewhere. In data
reorganization, rows (and sometimes columns as here) are permuted to
put similar rows (and columns) together. (Two n-tuples are similar to
the extent that the n-dimensional distance between them is small.) The
result for the 18 samples is shown in Table 3. After this reorganiza-
tion was done, the sponsor told us the classes. Table 3 is perfect in
the sense that it could be broken between rows into four parts, each
exactly corresponding to a given class. We also used the reorganiza-
tion by rows for automatically obtaining the clistering hierarchy shown
in Fig. 1. Table 3 is broken into two tables by dividing between the
rows whose distance apart is largest. These cablos are div-laed further,
etc. Partly on this hierarchy, we obtained 'he clusters (1) through
(4) given earlier.

3
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(3,5,6,7.9,11) (4.17,18) (101

(8,12) (14)
Fig. 1 - Clustering hierarchy from data reorganization by row
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Fig. 2 - Principal components



In the method of two principal components, the data is projected
from an 18 dimensional space onto the "best" plane (two dimensional
space). The result for our data is shown in Fig. 2. Each of the two
&xes is a linear combination of the original 18 features. Again wc see
that the results are good. Partly based on Fig. 2, we obtained clusters
(1) through (4) given earlier.

4. FUTURE WORK

Our sponsor will give us a much larger set of data, and we are
looking forvard to analyzing it. We hope that the results will continue
to be favorable. We shall also be applying clustering techniques to
automatic phoneme recognition and intelligent data base management
systems.
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